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ABSTRACT 

Accuracy is of significant importance in animal breeding, as it directly impacts the response to selection. 
The objectives of this study were to estimate the accuracy of genomic breeding values (GEBV) from a simulated 
population of the dairy cattle population of northern Thailand, which has exhibited an increasing trend from the past 
to the present. Data were simulated using a calibration set (CS) of 2,000 and 3,000 animals, heritability (h2) ranging 
from 0.05 to 0.50, and the number of SNPs at 20K and 40K. The GEBV was estimated using BLUP under animal 
model, and the accuracy was estimated by the correlation between GEBV and TBV from the simulation. The 
accuracy of GEBV ranged from 0.0870 to 0.8761. The CS of 3,000 animals was higher than the CS of 2,000 animals. 
Additionally, it was observed that the accuracy of the low h2 trait was unstable and lower than the high h2 trait, and 
the accuracy between 20K and 40K of SNPs was similar, with the highest values being 0.8761 and 0.8189, 
respectively. This study showed the CS of 3,000 animals and SNPs 40K would be appropriate for estimating GEBV. 
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INTRODUCTION  

Dairy cattle breeding aims to improve the 
efficiency and productivity of dairy cattle by 
selecting animals with desirable traits. Estimated 
Breeding Value (EBV) was used to predict the 
genetic value of a trait in an individual animal based 
on the Best Linear Unbiased Prediction Method 
(BLUP; Henderson, 1975). Genomic Selection (GS; 
Meuwissen et al., 2001) was developed for use in 
dairy cattle breeding by using genetic markers 
distributed throughout the genome to estimate 
genomic breeding value (GEBV) (Guarini et al., 
2019). The GEBV is the predicted genetic value of an 
individual animal based on genomic information and 
is calculated using statistical models that incorporate 
the animal's genotypic data as well as information on 
the inheritance and expression of the trait of interest 
(Hayes et al., 2010). The GEBV can be used in 
breeding programs to make selection decisions for 
individual animals. The animals with the highest 
GEBV for these traits can be selected as sires and 
dams for the next generation to improve the overall 
genetic potential of the population (de los Campos et 
al., 2013; García-Ruiz et al., 2022). 

The accuracy of GEBV depends on many 
factors, such as the historical population, CS, h2 of the 

trait, the number of single nucleotide polymorphisms 
(SNPs), linkage disequilibrium (LD), minor allele 
frequency (MAF), quantitative trait loci (QTL), and 
the relatedness between the CS and validation set 
(VS) (VanRaden et al., 2008; Goddard, 2009; 
Daetwyler et al., 2010; Wientjes et al., 2013). Corbin 
et al. (2010) reported that historical population data 
reveal genetic diversity and patterns of genetic 
variation in populations, which can help in selection 
planning. Hayes et al. (2009) and Hickey et al. (2011) 
reported that large CS led to greater genetic diversity. 
This leads to a more accurate assessment of the 
influence of markers, especially for traits with a 
complex genetic structure. Similarly, Meuwissen et 
al. (2016) reviewed the literature on GS in animal 
breeding and highlighted the importance of 
combining genotypic and phenotypic information to 
improve the accuracy of genomic predictions. The 
authors also emphasized the need to account for the 
genetic architecture of the trait being predicted and 
the effects of population structure and environmental 
factors. The group of animals consists of a group of 
animals with a known phenotype (calibration set; CS) 
and an unknown phenotype or progeny group 
(validation set; VS). Data simulation is a prevalent 
method. It can be used to study the methods for 
estimating GEBV, the factors affecting GEBV, and 
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the accuracy of GEBV in different populations. It can 
apply the results to real data by adjusting 
environmental factors or other fixed factors to obtain 
GEBV and accuracy. However, there are many 
factors affecting GEBV and accuracy estimation. The 
number of CS and SNPs is important for different 
populations and traits (h2). Therefore, the objective of 
this study was to estimate the accuracy and study the 
trend of changes in accuracy within the dairy cattle 
population of northern Thailand, considering 
different levels of CS, h2, and SNPs. This study will 
provide information on the selection and planning of 
dairy cattle breeding for the future. 

MATERIALS AND METHODS 

Data Simulation 

This study uses dairy cattle population data 
collected from the dairy cattle data of northern 
Thailand from 1964 to 2020 to be used as a historical 
population (location of Chiang Mai, the latitude and 
longitude were 18° N and 98° E, respectively). It 
simulated the data from two groups of animals: a 
reference group of animals with known phenotypes 
(calibration set; CS) of 2 levels, 2,000 and 3,000 
animals, and a group of animals with unknown 
phenotypes (validation set; VS). In the VS group are 
the offspring born from the CS group. The QMSim 
package (Sargolzaei and Schenkel, 2009; Scheper, 
2016; Mehdi and Flavio, 2019) was used to simulate 
all animals at two levels of SNPs, 20,000 (20K) and 
40,000 (40K), at MAF of 0.05 and 10 levels of h2 of 
0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 
0.50, as shown in Table 1. Phenotypic and genotypic 
data, SNPs, and true breeding value (TBV) from the 
data simulation were determined by the h2 of the trait 
without environmental factors or fixed effects. 

Estimation of Genomic Breeding Values (GEBV) 

The SNPs obtained from the simulation are 
used to create the genomic relationship matrix (G 
matrix) to estimate the GEBV of the trait determined 
by h2 in the CS and VS using BLUP (Best Linear 
Unbiased Prediction) under the Animal model. 

 

  Where  y = vector of observation 

             µ = the overall mean  

             u = vector of random animal effects 

             Z = design matrix relates records to random  

                    animal effects 

             e = vector of random residual errors 

  Generally, the mixed model equation (MME) is as   
  follows: 

 

  Where     

         G = genomic relationship matrix  

Table 1. Base parameters used in the simulations 

Parameters  

Historical population 

No. of animals in the 0 generation 

No. of animals in the 10th generation 

No. of animals in the 20th generation 

 

1,252 

35,844 

70,724 

Current population 

Replacement ratio for sires  

 

0.50 

Replacement ratio for dams 0.25 

Criteria for selection/culling Age 

Heritability (h2) 0.05, 0.10, 0.15, 

0.20, 0.25, 0.30, 

0.35, 0.40, 0.45, 

0.50 

Genome 

No. of chromosome 

 

30 

number of markers (1 K = 1,000 SNPs) 20K and 40K 

Minor allele frequency (MAF) 0.05 

 

Accuracy of Genomic Breeding Values (GEBV) 

The accuracy of GEBV was calculated 
from the correlation between GEBV in the CS and 
VS and True Breeding Value (TBV) (Takeda et al., 
2021). 
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RESULTS 
Accuracy of genomic breeding values (GEBV) 

This study showed the accuracy of GEBV 
under simulated data from the dairy cattle population 

of northern Thailand, as shown in Table 2. It was 
found that the accuracy ranged from 0.0870 to 
0.8761. The accuracy of CS and VS ranges from 
0.0870 to 0.8761 and 0.1278 to 0.7015, respectively.

 

Table 2. Accuracy of genomic breeding values (GEBV)  

SNP h2 Rep. 

2,000 animals 3,000 animals 

Calibration set Validation set Calibration set Validation set 

𝑿"  SE 𝑿" SE 𝑿" SE 𝑿" SE 

20K 

0.05 10 0.0870 0.1064 0.1656 0.0669 0.0890 0.0259 0.1752 0.0304 

0.10 10 0.3849 0.0846 0.3426 0.0367 0.3676 0.0475 0.3408 0.0589 

0.15 10 0.4596 0.0323 0.2267 0.1726 0.5339 0.0794 0.4625 0.0713 

0.20 10 0.4116 0.1185 0.3637 0.0336 0.5986 0.0081 0.5181 0.0170 

0.25 10 0.6990 0.0647 0.4790 0.0665 0.6589 0.0248 0.4241 0.0620 

0.30 10 0.6560 0.0401 0.4169 0.0182 0.7356 0.0331 0.5200 0.0591 

0.35 10 0.7512 0.0379 0.5560 0.0351 0.7256 0.0685 0.6189 0.0438 

0.40 10 0.8154 0.0264 0.6238 0.0554 0.8185 0.0345 0.5659 0.0316 

0.45 10 0.7781 0.0530 0.5729 0.0956 0.8305 0.0269 0.6398 0.0491 

0.50 10 0.8084 0.0865 0.5179 0.2223 0.8761 0.0082 0.7015 0.0273 

40K 

0.05 10 0.1837 0.0889 0.1278 0.0652 0.1883 0.1051 0.2282 0.1275 

0.10 10 0.3480 0.1088 0.2924 0.0631 0.3014 0.0567 0.1917 0.0415 

0.15 10 0.3892 0.0799 0.3141 0.0296 0.6573 0.0398 0.4956 0.0371 

0.20 10 0.5796 0.0761 0.4036 0.0913 0.6808 0.0277 0.5532 0.0445 

0.25 10 0.6038 0.0761 0.4693 0.0428 0.7218 0.0333 0.5433 0.0455 

0.30 10 0.7029 0.0500 0.4407 0.1540 0.7579 0.0318 0.5765 0.0704 

0.35 10 0.7931 0.0165 0.5600 0.0368 0.8189 0.0092 0.6483 0.0271 

0.40 10 0.7460 0.0511 0.5963 0.0563 0.7589 0.0231 0.5660 0.0293 

0.45 10 0.8359 0.0179 0.6209 0.0300 0.8274 0.0125 0.6048 0.0337 

0.50 10 0.8306 0.0220 0.5761 0.0449 0.8039 0.0301 0.5805 0.0488 

SNPs = single nucleotide polymorphism, h2 = heritability, Rep. = replication. 

Effect of Calibration set (CS) on the accuracy of 
genomic breeding values (GEBV) 

The accuracy of GEBV under the CS in 
2,000 and 3,000 animals with 20K SNPs was similar 
in both sizes. The accuracy of the CS of 3,000 
animals and the VS from the CS of 3,000 animals had 
the highest values of 0.8761 and 0.7015, respectively. 
The accuracy of the CS of 2,000 animals and the VS 
from the CS of 2,000 animals had the highest values 

of 0.8154 and 0.6238, respectively (Figure 1). 
Similarly, with the number of SNPs at 40K, the 
accuracy for both sizes was similar. The accuracy of 
the CS of 3,000 animals and the VS from the CS of 
3,000 animals had the highest values of 0.8189 and 
0.6483, respectively. The CS of 2,000 animals and 
the VS from the CS of 2,000 animals had the highest 
values of 0.7931 and 0.5963, respectively, as shown 
in Figure 2.
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Figure 1. Accuracy of genomic breeding values (GEBV) of CS of 2,000 and 3,000 animals, and number of SNPs 20K.   

(A = accuracy of CS of 2,000 animals, B = accuracy of VS from CS of 2,000 animals, C = accuracy of CS of 3,000 animals, D = accuracy of 
VS from CS of 3,000 animals). 

 

 
Figure 2. Accuracy of genomic breeding value (GEBV) of CS of 2,000 and 3,000 animals and number of SNPs 40K.  

(A = accuracy of CS of 2,000 animals, B = accuracy of VS from CS of 2,000 animals, C = accuracy of CS of 3,000 animals,  
D = accuracy of VS from CS of 3,000 animals). 

 

 
Figure 3. Accuracy of genomic breeding value (GEBV) at different levels of heritability (h2). (A = accuracy of CS of 2,000 animals and 20K 
SNPs, a = accuracy of VS from CS of 2,000 animals and 20K SNPs, B = accuracy of CS of 2,000 animals and 40K SNPs, b = accuracy of VS 
from CS of 2,000 animals and 40K SNPs, C = accuracy of CS of 3,000 animals and 20K SNPs, c = accuracy of VS from CS of 3,000 animals 

and 20K SNPs, D = accuracy of CS of 3,000 animals and 40K SNPs, d = accuracy of VS from CS of 3,000 animals and 40K SNPs). 
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Effect of heritability (h2) on the accuracy of 
genomic breeding values (GEBV) 

The effect of h2 on the accuracy of GEBV 
was found to increase and remain constant when h2 
increased (Figure 3). The accuracy of GEBV in the 
CS of 3,000 animals and the VS from the CS of 3,000 
animals were highest in the h2 at 0.45 and 0.35, 
respectively; and with a group of 2,000 animals, it 
had the highest h2 of 0.45 for both CS and VS. 

 
 
 

 

Effect of number of SNPs on the accuracy of 
genomic breeding values (GEBV) 

The effect of the number of SNPs on the 
accuracy of GEBV, it was found that the number of 
SNPs 20K and 40K in the CS of 2,000 animals had 
the highest values of 0.8154 and 0.7931, and in the 
VS from the CS of 2,000 animals, the values were 
0.6238 and 0.5963, respectively. And, at the CS of 
3,000 animals, the highest values were 0.8761 and 
0.8189, and in the VS from the CS of 3,000 animals, 
the highest values were 0.7015 and 0.6483 at the 
number of SNPs 20K and 40K, respectively (Figure 
4 and 5). 

 

Figure 4. Accuracy of GEBV at the number 20K and 40K of SNPs of CS of 2,000 animals. 
(A = accuracy of CS 2,000 animals on 20K SNPs, a = accuracy of VS from CS 2,000 animals on 20K SNPs, B = accuracy of CS 2,000 

animals on 40K SNPs, b = accuracy of VS from CS 2,000 animals on 40K SNPs). 

 

 

Figure 5. Accuracy of GEBV at the number 20K and 40K of SNPs in 3,000 CS. 
(A = accuracy of CS 2,000 animals on 20K SNPs, a = accuracy of VS from CS 2,000 animals on 20K SNPs, B = accuracy of CS 2,000 

animals on 40K SNPs, b = accuracy of VS from CS 2,000 animals on 40K SNPs). 
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The standard error (SE) of accuracy 

The standard error (SE) from simulation 
found that the SE values of the CS of 2,000 animals 
with SNPs 20K and 40K ranged from 0.1064 to 
0.0865 and 0.0889 to 0.0220, respectively. The CS of 
3,000 animals with SNPs 20K and 40K ranged from 
0.0259 to 0.0082 and 0.1051 to 0.0301, respectively, 
as shown in Table 2. 

DISCUSSION 
A study of the historical population of the 

dairy cattle population of Northern Thailand from 
1964 to 2020 found that the size of the dairy cattle 
population has increased. This is consistent with a 
study by Gerdsook (2016), who reported that the 
dairy cattle population of Northern Thailand from 
1952 to 2014 has increased and is on the trend of 
increasing. Numerous studies have reported the 
influence of historical populations on accuracy. For 
example, a study by Nwogwugwu et al. (2020) 
reported the accuracy of a cattle population in Korea 
by simulating the historical population with a 
constant size of 1,000 animals up to a generation of 
1,000, which decreased to 200 animals in the next 95 
generations. The accuracy was found to be 0.563, 
0.735, and 0.808, with h2 values of 0.1, 0.3, and 0.5, 
respectively. Consistent with the Atefi et al. (2016) 
study, the historical population was simulated. The 
size was constant at 1,000 animals until 100 
generations and gradually decreased until the 
remaining 500 animals in the 200th generation. The 
accuracy was found to be 0.57, 0.70, and 0.77, with 
h2 0.15, 0.30, and 0.45, respectively. The large 
historical population sizes indicate greater genetic 
diversity, which is helpful for accurately estimating 
genetic parameters and genetic markers associated 
with various traits. However, other factors, such as 
the quality and quantity of phenotypic data, the 
genetic structure of the trait, and the statistical 
methods used in the study, should also be taken into 
account to influence the accuracy of the assessment 
of GEBV. 

The accuracy of GEBV by using simulation 
and data from the dairy cattle population of northern 
Thailand. The results showed that the accuracy of the 
CS was higher than that of the VS. Consistent with 
Bouwman et al. (2014), they estimated the accuracy 
of GEBV from simulations using genotyping data 
from relatives. They found that using genotype data 
from relatives and offspring can increase accuracy, 
especially in the VS. Similar to Calus et al. (2013), 
they used genomic technology to estimate genetics 
and evaluate the accuracy of the VS by predicting 
from the CS data that it has good genetic and 

phenotypic information. The results showed highly 
accurate breeding values. Boison et al. (2017) 
evaluated the accuracy of GEBV in Gyr (Bos indicus) 
dairy cattle using different VS sizes. It was found that 
the accuracy of the production traits ranged from 0.28 
to 0.49. However, the VS is a population that does not 
have direct phenotypic data but is derived from 
predicting animal data in the population with known 
phenotypes. As a result, the accuracy is lower than 
that of animals with known phenotypes. 

When considering the effect of CS on the 
accuracy of GEBV, it was found that increasing the 
CS can improve accuracy. Several studies have 
reported that CS affects accuracy. The accuracy of 
GEBV is higher as the CS increases. Increasing the 
CS will increase genetic diversity, resulting in high 
accuracy. However, an appropriate CS must be 
considered due to the high cost of genome selection. 
This study shows that the CS of 2,000 animals is 
sufficient to achieve an accuracy of more than 0.4 for 
the dairy cattle population of northern Thailand with 
h2 of 0.15. Similarly, Takeda et al. (2021) reported 
that the CS of 4,000 animals was sufficient to achieve 
a GEBV accuracy of carcass traits in Japanese black 
cattle of more than 0.4. Zhang et al. (2023) reported 
that using the CS of 6,000 animals could increase the 
accuracy of GEBV for the production traits of 
Chinese Holstein cattle by greater than 0.40. It can be 
seen that the accuracy of GEBV is different when 
using different CS. This is because animals in each 
population have different relationships. Falconer et 
al. (1997) reported that increasing the number of 
offspring (progeny) per sire in the VS can reduce 
differences in accuracy estimation methods. 
However, the CS studied this time was similar, 
resulting in similar accuracy values. In the next study, 
a larger CS should be added to observe the accuracy 
trend further. 

It was considering the influence of different 
levels of h2 on the accuracy of GEBV. At low h2, the 
accuracy was relatively low. But while the h2 is high, 
the accuracy of GEBV tends to increase. This is 
consistent with the study by Buaban et al. (2021), 
which reported that the accuracy values of milk yield 
traits of dairy cattle in Thailand ranged from 0.27 to 
0.37. Similarly, Yan et al. (2022) reported that the 
accuracy (r) of GEBV by simulation in goats with h2 
values of 0.11 and 0.34 was 0.465 and 0.604, 
respectively. While Togashi et al. (2019) reported the 
reliability values (r2) of the dairy cow population with 
h2 of 0.1, 0.3, and 0.5, which were equal to 0.0769, 
0.2000, and 0.2941, respectively, the accuracy values 
were lower than this study. However, it can be seen 
that when the h2 value increases, the accuracy tends 
to increase. This is because accuracy and  
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h2 are important factors affecting the response to 
selection. Traits with high h2 are more responsive to 
selection than those with low h2, resulting in rapid 
genetic progress. 

The effect of SNPs of 20K and 40K on the 
accuracy of GEBV, it was found that the accuracy 
values for both CS estimated from 40K SNPs were 
only slightly higher than those from 20K SNPs. The 
more informative SNPs, the higher the accuracy of 
GEBVs. However, using a larger number of SNPs 
can improve the accuracy of GEBV, but there may be 
little or no increase. Consistent with the study of 
Hayes et al. (2019), they reported that increasing the 
number of SNPs from 24K to 728K resulted in a 
slight increase in the accuracy of GEBV in three 
cattle breeds, with values of 0.22 and 0.24, 
respectively. They also reported that using many 
SNPs results in higher breeding costs. However, 
some studies reported that using a high-density SNP 
resulted in higher GEBV accuracy than using a low-
density SNP (Bolormaa et al., 2015). This study 
showed that increasing the accuracy of GEBV in the 
dairy cattle population in northern Thailand can use 
low-density SNPs for selection. Using low-density 
SNPs results in lower selection costs. Consistent with 
the study of Cole et al. (2016), they studied the 
efficiency of genomic selection in a multi-breed dairy 
population using 777,962 SNPs. The study found that 
50K SNPs were sufficient to increase the accuracy of 
genetic selection. Using a larger number of SNPs did 
not result in higher accuracy. Lopes et al. (2020) 
evaluated the accuracy of GEBV in US Holstein 
cattle using 777,962 SNPs. Increasing the number of 
SNPs improves the accuracy of GEBV. However, the 
accuracy tends to increase only slightly when the 
number of SNPs increases over 50K. 

In the study of the standard error (SE) of the 
accuracy of GEBV, it was found that increasing the 
CS will result in a lower SE, especially for traits with 
low h2. Consistent with the study of Gerdsook (2016), 
the SE decreased from 0.10 to 0.06 for the trait with  
h2 of 0.10 when the CS increased from 100 to 1,500 
animals. Similarly, Yan et al. (2022) reported the SE 
of the trait with a h2 of 0.11. The SE decreased from 
0.0862 to 0.0210 when the CS increased from 500 to 
3,000 animals. 

Each research (historical population) 
produced different results, as evidenced by the above 
information. Therefore, further research is important 
by using other factors and different levels of CS and 
SNPs for more results. 

 

 

CONCLUSIONS 
Accuracy of GEBV from simulation using 

dairy cattle population data from northern Thailand. 
It was found that the accuracy of the CS tended to be 
higher than that of the VS. In contrast, the accuracy 
of the CS of 3,000 animals and the VS from the CS 
of 3,000 animals tended to be slightly higher than that 
of the CS of 2,000 animals and the VS from the CS 
of 2,000 animals. In addition, we found that the 
accuracy of traits with low h2 tended to be unstable. 
This is because the SE is higher than traits with a high 
h2. Moreover, traits with low h2 have low accuracy, 
and SE is relatively high. While traits with high h2 
have high accuracy and relatively low SE, the 
accuracy of traits with low h2 can be increased by 
increasing CS. Moreover, it was found that the 
accuracy for the number of SNPs 20K and 40K was 
similar, but the SE of the number of SNPs 40K was 
lower than 20K. From the results of the study, it was 
found that using the CS of 3,000 animals and SNPs 
40K was appropriate for estimating GEBV in the 
dairy cattle population in northern Thailand. This is 
because the accuracy of GEBV is high, and the SE is 
low. Additionally, for low h2 traits, increasing the CS 
size can reduce the SE of the accuracy. 
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